利用1961—2019年江苏省67个站降水量和气候指数数据集等资料,选取大气环流、海温和积雪等先兆信号的不同组合作为预测因子方案,通过对比不同机器学习方法对江苏省夏季降水开展预测试验。结果表明,深度神经网络(Deep Neural Network,DNN)较传统统计方法和其他机器学习方法有一定优势,深度神经网络结合动态权重集合因子方案对江苏省夏季降水的预测技巧高,其独立样本检验结果稳定,2015—2019年的平均PS评分为76.0,距平符号一致率为0.62,距平相关系数达0.35,尤其对江苏省中南部的预测技巧更高,具有业务应用价值。不同预测因子方案对比分析表明,大气环流因子在江苏省夏季降水预测中做主要贡献,而海温因子和积雪等其他因子也有正贡献,说明使用综合性预测因子以及集合方案有助于提升季节预测准确率。
在此介绍一款自动气象站-自动雨量监测站。它是用于收集地面降雨信息的自动观测仪器,它可精确的记录每分钟的降水。主要应用于气象、水文、农业和环保等领域。 自动雨量监测站是无人全自动雨量记录仪器,它可作为无人职守的可移动式自记站使用。